
 International conference on Advanced Techniques in Communication Networking and Automation

ISSN: 2347-8578 www.ijcstjournal.org Page 1

Cost Effective Design & Verification of Ram Using Eda

Simulator Icarus with Cocotb

K. Srinath [1], Dr. R. Anandan [2], Vijitha S [3]. R. Deepa [4]

.[1] M.E CSE First Year, VISTAS, Chennai
[2] Professor-CSE,VISTAS, Chennai

[3] Assistant Professor-CSE,VISTAS,Chennai
[4] Assistant Professor-CSE, VISTAS, Chennai

ABSTRACT
A CPU, RAM, ROM, and other components are frequently included in electronic circuits on a single PCBA. Yet, an integrated circuit

designer has the option to combine all of these into a single chip thanks to very large- scale integration (VLSI) technology. To model

electronic systems and validate digital circuitry at the register-transfer level of abstraction, one uses the HDL Verilog. Analog and

mixed signal circuits can both be verified using it. Nowadays, computers are widely used in all fields of design. Structures are so

complicated that physical labor is no longer even an option in our minds. This is the current trend throughout all engineering

disciplines, not just electronic ones. The time when circuit designers could test their designs on a breadboard is long gone.

The Verilog hardware description language compiler is implemented in Icarus Verilog, which produces netlists in the required format

(EDIF). It supports the 1995, 2001, and 2005 revisions of the standard, as well as various extensions and a few system Verilog

modules. The main benefit of Icarus is that there are no costs associated with access or license. Icarus simulator can be used to create

Memory. The RAM design must then be confirmed in order to evaluate RAM performance using cocotb. Productivity in verification

is the focus of the cocotb. Because verification is a form of software, verification engineers have access to all the Python deliciousness

that has made software development efficient. It enables developers to quit battling language restrictions. Python is used to create RAM

test cases and verification code with cocotb. Cocotb offers a lean framework to effectively create verification code in addition to all

the benefits of the Python programming language and its ecosystem. Icarus has a support of cocotb verification, it can easily make a

communication with cocotb. So we can achieve cost effective design & verification of RAM.

OBJECTIVE OF THE PROPOSED

SYSTEM
The primary goal of this proposed system is to

produce RAM design and verification at no

expense. There are numerous software tools for

circuit design accessible on the market, but their

licenses come at a hefty price. In the field of

verification, businesses currently employ UVM

 (Universal Verification

Methodology) software, which is difficult to learn

and more difficult to operate. Hence, cocotb uses

Python as a verification language and replaces

UVM in the verification of RAM circuit design.

Icarus enables Verilog RAM design creation and,

more importantly, it supports cocotb. The permissive

BSD license applies to cocotb, which is open source.

It is open source and free to use, modify, and

distribute for any reason, including closed- source

and commercial applications.

✓ The objective of the proposed system is

to create cost-effective RAM.

✓ To make the electronic design

automation industry even smarter and easier.

✓ To reduce the verification coding pages

& any one can learn easily.

MOTIVATION

Most business owners lack the capital required to start a

venture in the technology industry. They will worry about

needing to spend more money in order to get the license for
the software tool they require. They have the skills needed to

be successful entrepreneurs, but they give up on their dream

due to financial constraints. They will use some illegal
software to reduce costs, but it won't give them full access. I

therefore worked on the suggested system for those reasons.

INTRODUCTION

Today, computers are an integral part of every design

discipline. This is the current trend across all engineering

disciplines, not just electronics. Designers saw the need for a
language that could represent digital circuits in the 1980s so

that the circuit could be analyzed and simulated. Hardware

description languages (HDL) were created in this manner. I'll
introduce you to an open- source Verilog simulation and

synthesizer tool in this article. HDLs by themselves were not
enough to lighten the load on VLSI circuit designers.

Quickly, tools for logic synthesis were created that could

convert an HDL-based design into a schematic circuit.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

 International conference on Advanced Techniques in Communication Networking and Automation

ISSN: 2347-8578 www.ijcstjournal.org Page 2

The fact that hardware description languages

provide techniques to describe how time and signal
dependencies spread sets them apart from software

programming languages. Using HDL, designs are
created at a very abstract level and are not dependent

on the IC fabrication method. It was initially designed

as a simulation language, and synthesis support was
only later added. Very High-Speed Integrated Circuit

Hardware Descriptive Language, or VHDL for short,

is a programming language used to describe the
structure, behavior, and functions of a logic circuit. An

implementation of the Verilog hardware description
language is called Icarus Verilog or Verilog.

There are versions of Icarus Verilog for Linux,

Windows, and Mac OS. Seeing the simulated output of

the Verilog code is done using GTK Wave, a fully

featured waveform viewer built on the GTK+

framework. Icarus The source RAM design is written

in Verilog, and Verilog is a command-line tool that

compiles it to the target format. Icarus is completely

free to access so anyone can create their own circuit

design without any cost.

Then verification of RAM design can be achieved

through cocotb. The open-source project cocotb was

created by a loosely knit group of technologists with

similar viewpoints. value bug reports, feature

requests, customer support, and documentation

updates just as much as we value code changes or

assistance with releasing and maintaining cocotb.

cocotb can simulate any (RAM) hardware design,

whether it is created in (System)Verilog, VHDL, a

mixed language, or even a mixed- signal design.

cocotb supports all main simulators.

RAM Python test cases and proof code are written

using cocotb. Along with all the benefits of the Python

computer language and its ecosystem, cocotb offers a

simple framework for quickly writing verification code.

The built-in test runner with CI integration in cocotb

makes running RAM tests simpler than ever. As an

alternative, it's simple to integrate cocotb with your

current build and reporting system. We develop this

Concept using EDA playground for the Effective

Results.

SYSTEM ANALYSIS

EXISTING SYSTEM
Nowadays, VLSI industries employ cadence

software. Even though it was a strong tool, the cost of
the license was higher. The largest percentage of the

total expenditure is spent on engineering design and

verification for RAM. The nature of RAM hardware
design necessitates the creation of several dynamic

parallel processes, which are common in UVM

testbench results. As most of these processes are
relatively little in size, it wouldn't be beneficial to try to

generate separate CPU threads for each one and
synchronize them.

http://www.ijcstjournal.org/

 International conference on Advanced Techniques in Communication Networking and Automation

ISSN: 2347-8578 www.ijcstjournal.org Page 3

It is quite challenging to verify Memory using the

System Verilog language. Almost a thousand pages

make up the System Verilog specification.
Compared to C++'s
83 keywords, language includes 221 keywords.
Strong but difficult to learn.

DISADVANTAGE:

• The expense of the licensing is the biggest

disadvantage of utilizing Cadence Xelium for

Memory design.

• The libraries used by this program are

quite difficult to use and require that we keep
thousands of data.

• Because UVM components are more

numerous and the verification procedure is
time-consuming, more RAM code is needed.

PROPOSED SYSTEM:
In our proposed system, To get around these

difficulties, we're suggesting two pieces of software:

ICARUS for designing RAM and cocotb for

verifying RAM circuits. In essence, this will

establish and keep a connection with cocotb.

ICARUS in the EDA playground permits cocotb for

the RAM design verification methodology. For the

design and verification of hardware circuits,

businesses all spend money on licensed software.

Even students require some illegal software for their

academic needs. cocotb removes the python language

in favor of the system Verilog, allowing for more

code to be written in the verification area with less

time spent on it. No additional RTL code is necessary

for a typical Cocotb testbench.

The Design Under Test (DUT) is instantiated as

the top-level of the simulator without the need of any

wrapper code. The DUT's inputs (or those lower in

the hierarchy) are stimulated by Cocotb, which uses

Python to directly track the outputs. In order to

connect Python and the simulator, cocotb is used. It

uses the VHDL Procedural Interface (VHDLPI) or

the Verilog Procedural Interface (VPI) (VHPI).

Simply put, a test is a Python function.

The await keyword specifies when the simulator

should regain control of execution. Several coroutines

can be started by a test, allowing for multiple execution

flows.

ADVANTAGE:

• Users can modify, simulate (and examine

waveforms), synthesize, and share their HDL

code using the free web tool ICARUS EDA

Playground.

• Updating values when moving through the DUT

hierarchy. The simulation timer will eventually

expire. Observe the rising or lowering edge of

the signal.

• It automatically finds tests; thus, an extra step is

not needed to include a test in a regression.

• When compared to UVM, it requires less skill

and reduces coding complexity.

Proposed system Architecture:

MODULES:

• RTL module code (Verilog).

• Cocotb Coroutine module(python).

• Top rapper module (Verilog).

http://www.ijcstjournal.org/

 International conference on Advanced Techniques in Communication Networking and Automation

ISSN: 2347-8578 www.ijcstjournal.org Page 4

Modules description:

RTL MODULE CODE(VERILOG):

Using clock-based write and read operations, this

module will generate the RTL RAM design in

Verilog. Details and specifications for the RAM

design are contained in this module. It determines the

RAM's capacity and functionality. It offers edges, a

reset, an address, and the size of read and write

data. If customers want to add any other functionality,

they can do so in this module. Normally, the working

functionality of RAM is excluded from the design

phase.

COCOTB COROUTINE MODULE (PYTHON):

Python-coded RAM verification is contained in this

module. The randomized variable is passed during

read and write operations for verification, and this

module then returns the variable about the RAM's

verification code. Cocotb enables you to directly

control the signals in your design from Python by

automatically establishing connections to a range of

HDL simulators (including Icarus). Python may be

used to write the entire testbench, and the ease of

implementing automation and randomization will

enhance productivity.

It is an independent simulation for the test bench and

design. For communication, VPI/VHPI interfaces—

represented as Cocotb "triggers"—are employed. The

simulation time does not advance while the Python

function is running. The testbench pauses execution

after a trigger is provided until the triggered condition

is met before restarting it. Since the hierarchy can be

easily ascended because Python and RTL are co-

simulated. Any internal signal can be read or altered

by the Python testbench. It facilitates single event

upset modelling. With Cocotb, post-synthesis

simulations are also possible. With the wrapper

technique, time constraints (SDF) files can be loaded

on demand.

TOP RAPPER MODULE:

This module will connect the RAM DUT with Cocotb

RAM verification code (design under test). RTL

testbench components may still be utilized. The actual

design being tested must be instantiated along with

additional testing components and a trigger interface in

order to produce a top-level Verilog or VHDL logic.

Although it is not feasible to call operations directly, it

can still be useful for low-level testing, assertions, and

other purposes. With Cocotb, post-synthesis simulations

are also possible. The wrapper method enables on-

demand loading of time constraints (SDF) files.

Hardware Environment:

Since they could serve as the foundation of a contract
for the system's implementation, the hardware

requirements ought to be a thorough and consistent
description of the entire system. For software engineers,

they serve as the basis for system design. It does not

explain how the systems should be used; rather, it shows
what the systems do.

• CPU | Any x86 processor

• Architecture | 64 bit

• Base Clock Speed | 1.8 GHz

• HDD or SSD space | 32 Gb

• RAM | 4 Gb

Software Environment:

The software requirements define the system. There

should be a definition and a set of requirements. On top of

the software requirements, the software requirements

specification is constructed. It is useful for estimating

costs, planning team activities, carrying out tasks, and

keeping track of the team's advancement during the

development activity.

• Language | Verilog & Python 3.x

• IDE | Any code editor

• OS | Windows 10, Ubuntu 18.0, MacOS

10.12.6

http://www.ijcstjournal.org/

 International conference on Advanced Techniques in Communication Networking and Automation

ISSN: 2347-8578 www.ijcstjournal.org Page 5

Screenshot:

RTL Screenshot:

COCOTB module:

Table Top Module:

Verification result:

http://www.ijcstjournal.org/

 International conference on Advanced Techniques in Communication Networking and Automation

ISSN: 2347-8578 www.ijcstjournal.org Page 6

CONCLUSION

So, by using our application, we can design and

verify RAM at a low cost. through the verification

process based on Python. There is no additional RTL

code required to use Cocotb. The DUT is instantiated

at the top level in the simulator. Python is employed to

stimulate the DUT's inputs and track its results. It can

be quite helpful to folks who are unfamiliar with it

because it does not require understanding of HDLs.

The simulation time for the IP cores verified using the

standard UVM methodology compared to the cocotb

framework has significantly improved because the

python-based framework only needs the c-model to

generate the vectors, as opposed to the UVM

methodology, which needs both the RTL and the c-

model to verify the design.

REFERENCES

1. Brian Towles & William J. Dally (2001)
Route Packets Not Wires on Chip

Interconnection Network, Proceedings of the

38th Annual Design Automation Conference,
pp. 684-689.

2. Sanju V & Niranjan N Chiplunkar (2008) .

Proceedings of the International Conference
on Emerging Methods in Computing,

Electronics, Embedded System & VLSI

Design, "Network-on- Chip: A Short
Overview"

3. C. Batten & S. Jiang, P. Pan, Y. Ou IEEE
Micro, vol. 40, no. 4, pp. 58–66, 1 July–2
August2020; doi:10.1109/MM

.2020.2997638; "PyMTL3: A Python

Framework for Open-Source Hardware

Modeling, Generation, Simulation, and

Verification."

4. C.Spear, second version of "System Verilog

for Verification: A Guide to Learning the
Testbench Language Features," published in

2008.

5. Martin Spicknel, Muhammad AlI and Michael

Well (2008) The 4th European Conference on

Circuits and Systems for Communications’
"Networks on Chip: Scalable Interconnects for

Future Systems on Chip" was published.

6. Wim Heirman, Karel Bruneel, Robbe

Vancayseele, Brahim Al Farisi, and Dirk

Stroobandt (2011) 6th International Workshop

on Reconfigurable.

Communication-Centric Systems-on-Chip,

"RecoNoC: A Reconfigurable Network-on-Chip"

(ReCoSoC).

7. Abd El Ghany, Salma Hesham, Jens Rettkowski

and Diana Göhringer, Mohamed A (2015)
Springer International Publishing Switzerland,

"Study on Real-Time Network-on-Chip

Architectures."

8. Niranjan Chiplunkar, Koushika C, Sanju V,

Sharmili R., and M. Khalid (2014) International

Journal of Computational Science and
Engineering, No. 9, "Design and implementation

of a network on chip-based simulator: a

performance analysis."

9. Slim Ben Saoud and Ahmed Ben, Abdallah

(2013) International Journal of Advanced

Computer Science and Applications, No. 4, "A

Review of Network-On-Chip Tools."

10. Razvan Nane, Fabrizio Ferrand, Yu Ting Chen

and Jongsok Choi (2016) IEEE Transactions on
Computer-aided Design of Integrated Circuits

and Systems, Vol. 35, "A Study and Assessment

of FPGA High-Level Synthesis Tools.”

http://www.ijcstjournal.org/

